Machine Learning
Machine learning specific functions.
get_features_targets(df, target_column_names, feature_column_names=None)
Get the features and targets as separate DataFrames/Series.
This method does not mutate the original DataFrame.
The behaviour is as such:
target_column_names
is mandatory.- If
feature_column_names
is present, then we will respect the column names inside there. - If
feature_column_names
is not passed in, then we will assume that the rest of the columns are feature columns, and return them.
Examples:
>>> import pandas as pd
>>> import janitor.ml
>>> df = pd.DataFrame(
... {"a": [1, 2, 3], "b": [-2, 0, 4], "c": [1.23, 7.89, 4.56]}
... )
>>> X, Y = df.get_features_targets(target_column_names=["a", "c"])
>>> X
b
0 -2
1 0
2 4
>>> Y
a c
0 1 1.23
1 2 7.89
2 3 4.56
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame
|
The pandas DataFrame object. |
required |
target_column_names |
Union[str, Union[List, Tuple], Hashable]
|
Either a column name or an iterable (list or tuple) of column names that are the target(s) to be predicted. |
required |
feature_column_names |
Optional[Union[str, Iterable[str], Hashable]]
|
The column name or iterable of column names that are the features (a.k.a. predictors) used to predict the targets. |
None
|
Returns:
Type | Description |
---|---|
Tuple[DataFrame, DataFrame]
|
|
Source code in janitor/ml.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
|